
This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Synthesis and Properties of P¹, P²-, P¹, P³- and P¹, P⁴-Dinucleoside Di-, Triand Tetraphosphate mRNA 5'-Cap Analogues

J. Steogon^a; piński^a; M. Bretner^b; M. Jankowska^a; K. Felczak^b; R. Stolarski^c; Z. Wieczorek^d; A-L. Caipostalcode^c; R. E. Rhoads^e; A. Temeriusz^a; D. Haber^c; E. Darzynkiewicz^c

^a Dept. of Chem., Univ. of Warsaw, Warsaw, Poland ^b Inst. of Biochem. and Biophys., Polish Acad. of Sciences, Warsaw, Poland ^c Dept. of Biophys., Inst. of Exptl. Phys., Univ. of Warsaw, ul. Żwirki i Wigury, Warsaw, Poland ^d Dept. of Phys. and Biophys., Acad. of Agric. and Technol., Olsztyn, Poland ^e

To cite this Article Steogon, J. , piński, Bretner, M. , Jankowska, M. , Felczak, K. , Stolarski, R. , Wieczorek, Z. , Caipostalcode, A-L. , Rhoads, R. E. , Temeriusz, A. , Haber, D. and Darzynkiewicz, E.(1995) 'Synthesis and Properties of P^1 , P^2 , P^3 and P^1 , P^4 -Dinucleoside Di-, Tri- and Tetraphosphate mRNA 5'-Cap Analogues', Nucleosides, Nucleotides and Nucleic Acids, 14: 3, 717 — 721

Dept. of Biochem. and Mol. Biol., Louisiana State Univ., Shreveport, USA

To link to this Article: DOI: 10.1080/15257779508012457 URL: http://dx.doi.org/10.1080/15257779508012457

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND PROPERTIES OF P¹,P²-, P¹,P³- AND P¹,P⁴- DINUCLEOSIDE DI-, TRI- AND TETRAPHOSPHATE mRNA 5'-CAP ANALOGUES

J. Stępiński^a, M. Bretner^b, M. Jankowska^a, K. Felczak^b, R. Stolarski^c, Z. Wieczorek^d, A-L. Cai^e, R.E. Rhoads^e, A. Temeriusz^a, D. Haber^c, E. Darżynkiewicz*^c

^aDept. of Chem., Univ. of Warsaw, Warsaw, Poland. ^bInst. of Biochem. and Biophys., Polish Acad. of Sciences, Warsaw, Poland. ^cDept. of Biophys., Inst. of Exptl. Phys., Univ. of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland. ^dDept. of Phys. and Biophys., Acad. of Agric. and Technol., Olsztyn, Poland. ^eDept. of Biochem. and Mol. Biol., Louisiana State Univ., Shreveport, USA.

Abstract: Chemically synthesized dinucleoside P¹,P²-di-, P¹,P³-tri- and P¹,P⁴-tetraphosphates, derivatives of 5'-linked 7-methylguanosine and guanosine were characterized with respect to their structural properties and functional effect on eukaryotic translation inhibition.

Dinucleotide oligophosphates with 5',5' linkages are of considerable biochemical interest. One of them is the 5'-terminal "cap", m7G(5')ppp(5')N, a structure common to most eukaryotic mRNAs. We have focused our attention 1,2 on the synthesis of cap analogues and their physicochemical and biological properties.

In the present communication we report the synthesis of dinucleoside analogues linked by a 5',5'-di-, tri- and tetraphosphate bridges. In addition, a new approach to the introduction of 7-methyl group into dinucleoside cap analogues has been demonstrated.

RESULTS AND DISCUSSION

The pyrophosphate bond formation in di-, tri- and tetraphosphate cap analogues, which structures are shown in FIG. 1, was achieved by the method introduced recently by Sawai et al.³. Prepared that way $GppG(\underline{1})$, $GpppG(\underline{4})$ and $GppppG(\underline{7})$ were employed as starting materials for a one-pot synthesis of appropriate mono- and double-7-methylated analogues (compounds: $\underline{2}$ and $\underline{3}$; $\underline{5}$ and $\underline{6}$; $\underline{8}$ and $\underline{9}$). Some of the analogues had been previously synthesized using other methodology⁴; their properties proved to be identical.

The structures of the products (1 - 13) were verified by ^{1}H and ^{31}P NMR spectroscopy. Selected examples of the ^{1}H NMR spectra analysis are collected in TABLE 1 and 2. The dinucleoside phosphates with the same nucleoside units show only singular set of

1 GppG:
$$B_1 = B_2 = G^{\circ}$$
, $n = 2$

2 m^7 GppG: $B_1 = m^7 G^{\circ}$, $B_2 = G$, $n = 2$

2 m^7 GppG: $B_1 = m^7 G^{\circ}$, $B_2 = G$, $n = 2$

3 m^7 GpppG: $B_1 = B_2 = m^7 G$, $n = 2$

4 GpppG: $B_1 = B_2 = G$, $n = 3$

5 m^7 GpppG: $B_1 = B_2 = G$, $n = 3$

6 m^7 GpppG: $B_1 = B_2 = m^7 G$, $B_2 = G$,

FIG. 1. Structures of the synthesized mRNA 5'-cap analogues.

TABLE 1. ¹H-NMR chemical shifts (δ in ppm) of the selected cap analogues.

Compound		Н8	H1'	H2'	Н3'	H4'	H5'	H5"	7-CH ₃	N ² -CH ₃
2	m ⁷ G	а	5.820	4.43 ^b	4.40 ^b	4.40 ^b	4.34 ^b	4.20 ^b	4.025	
3	G m ⁷ G	7.935 a	5.735 5.865	4.580 4.510	4.43 ^b 4.420	4.40 ^b 4.38 ^b	4.34^{b} 4.38^{b}	4.20^{b} 4.220	4.105	
<u>6</u>	m ⁷ G	a	5.940	4.540	4.460	4.385	4.375	4.265	4.110	
<u>8</u>	m ⁷ G G	a 8.055	5.965 5.735	4.600 4.650	4.485 4.530	$\frac{4.37^b}{4.37^b}$	4.37^{b} 4.26^{b}	4.280 4.26 ^b	4.075	
9	m^7G	а	6.015	4.645	4.535	4.400	4.380	4.280	4.120	
<u>12</u>	$m^{2,7}G$	<i>a</i> 8.045	5.975 5.855	4.570 4.710	4.470 4.520	$\frac{4.37^{b}}{4.37^{b}}$	4.37 ^b 4.27 ^b	4.275 4.27 ^b	4.065	2.870
<u>13</u>	$\substack{m^{2,2,7}G\\G}$	<i>a</i> 8.015	5.995 5.775	4.600 4.655	4.465 4.500	$4.38^{b} 4.38^{b}$	$\frac{4.360}{4.26^b}$	$4.285 \\ 4.26^{b}$	4.065	3.090

a - exchanged for ${}^{2}H$;

b - approximate values due to signals overlapping.

Compound				J(i,j)					Conformation		
	1',2'	2',3'	3',4'	4',5'	4',5"	5',5"	5',P	5",P	%N	%+sc	%ар
2 m ⁷ G G	2.9 5.9	a 5,4	a a	a a	a a	a a	a a	a a	70 ^b 40 ^b	a a	a a
3 m ⁷ G	3.9	4.9	5.4	а	2.5	12.0	a .	5.0	58	85 ^b	75 ^b
6 m ⁷ G	3.8	5.0	5.2	2.7	3.2	12.2	4.7	5.8	58	78	73
8 m ⁷ G G	3.5 6.1	5.0 5.1	5.5 3.3	<i>a</i> 4.0	2.5 4.0	12.0 a	<i>a</i> 6.0	4.5 6.0	61 35	85 <i>b</i> 57	75 ^b 65
9 m ⁷ G	4.0	4.8	5.1	2.7	2.1	11.8	3.5	5.7	56	89	80
12 m ^{2,7} G G	3.7 6.6	5.1 5.1	5.2 2.9	<i>a</i> 4.0	2.5 4.0	12.0 a	а 6.5	5.9 6.5	59 31	85 ^b 57	70 ^b 61
$\frac{13}{G}$ $m^{2,2,7}G$	3.6 6.2	4.9 5.3	5.3 3.2	a 4.0	2.5 4.0	12.0 a	<i>a</i> 6.5	5.0 6.5	60 34	85 ^b 57	75 ^b 61

TABLE 2. ¹H-¹H and ¹H-³ P coupling constants (in Hz) and conformational parameters for 5'-cap analogues.

¹H NMR signals due to symmetry. The nucleoside phosphates with different nucleoside units show the characteristic ¹H NMR patterns for each of them. A ³¹P NMR spectrum of a typical dinucleoside triphosphate shows a doublet of two-phosphorus intensity at -12.2 ppm (P1 and P3) and a triplet at -22.8 ppm (P2); the ³¹P-³¹P coupling constant being 19.5 Hz.

A ^{31}P NMR spectrum of a typical dinucleoside tetraphosphate has an AA'XX' pattern with the chemical shifts and coupling constants as follows: $\delta(P1) = \delta(P4) = -10.9$ ppm, $\delta(P2) = \delta(P3) = -22.8$ ppm, J(P1,P2) = J(P3,P4) = 15 Hz, J(P2,P3) = 19.4 Hz, J(P1,P3) = J(P2,P4) = 2.8 Hz. Vicinal coupling constants were used to follow conformation of the analogues by the methodology described earlier⁴. All the dinucleotide cap analogues studied are conformationally similar to one another and to those studied hitherto⁴. The 7-substituted nucleotides show characteristic 55 to 70% populations of the N (C3' endo) form of sugar ring, more than 85% populations of the +sc conformer about the C4'-C5' bond i.e. gauche orientation of C5' to O4' and C3', and 70 to 80% populations of the conformer with a transoidal orientation of C4' and P about the C5'-O5' bond. The unsubstituted guanine moieties prefer the S type sugar puckering (55 to 70%) and a less marked predominance of +sc (55 - 70%) and ap (gauchetrans, 60 to 73%) conformations about the C4'-C5' and C5'-O5' bonds, respectively.

Fluorescence and UV-absorption studies of the obtained compounds have been accomplished by the methodology described previously⁵. Fluorescence maxima (λ max), acidity constants (pK) and quantum yields at pH 5.02 and 9.07 were determined. In addition, for intramolecular base stacking evaluation the fluorescence intensities were measured as a

a - value not determined due to signals overlapping;

b - approximate value due to lack of the suitable coupling constants.

720 STEPIŃSKI ET AL.

function of temperature. The following conclusions may be drawn: (i) compounds $\underline{3}$, $\underline{6}$ and $\underline{9}$ exhibit no self-stacking at pH 5.02 due to electrostatic repulsion between the two positively charged 7-methylguanine rings; (ii) for compounds $\underline{12}$ and $\underline{13}$ a considerable (about 40%) decrease in stacking is noted in relation to their triphosphate counterparts (compounds $\underline{10}$ and $\underline{11}$, respectively); the analogous difference between $\underline{8}$ and $\underline{5}$ is less marked.

In a continuation of our previous studies 2,6 , the synthesized analogues were assayed as competitive inhibitors of rabbit globin mRNA translation in a rabbit reticulocyte cell-free system 7 . We observed that the dinucleotides bearing two 7-methylguanine residues ($\underline{3}$, $\underline{6}$ and $\underline{9}$) are equivalent to the analogues with one 7-methyl group ($\underline{2}$, $\underline{5}$ ad $\underline{8}$) containing the same number of phosphates. Moreover, the inhibitory effect increases together with the number of phosphates, for example $\underline{9}$ is more (about 4 times) potent inhibitor than $\underline{6}$, and significantly more (about 15 times) potent than $\underline{3}$. Non-methylated analogues ($\underline{1}$, $\underline{4}$ and $\underline{7}$) exhibit considerably weaker activity as inhibitors than their 7-methylated counterparts.

EXPERIMENTAL

Compounds 1, 4 and 7 were prepared from guanosine 5'-phosphorimidazolide (P-ImGMP) and GMP, GDP and GTP, respectively, in water solution in the presence of manganese(II) ions³ Analogously, appropriate imidazole-activated N²- and 7-methylated nucleotides, $P-Im(m^{2,7})GMP$ and $P-Im(m^{2,2,7})GMP$, prepared from $m^{2,7}GMP$ and $m^{2,2,7}GMP$ as previously reported^{2,4}, were coupled with GDP or GTP to afford compounds 10 - 13.

Compound 1 was methylated with methyl iodide (three molar excess) in DMSO at room temperature 1 and, the reaction progress was monitored by HPLC (Supelco LC-18-T reverse phase column, linear gradient of methanol from 0 to 25% in 0.1 M KH2PO4, pH 6, within 15 min. The samples were analyzed at 1 hr intervals and, the reaction was quenched when concentrations of m^7GppG and $m^7GppG(m^7)$ were equal (about 40% each, as revealed by monitoring at 260 nm). The resulting mixture was subjected to ion exchange column chromatography on DEAE-Sephadex (A-25, HCO3⁻ form) and eluted with a linear gradient of triethylammonium bicarbonate (pH 7.4) from 0 to 1 mol/l. The obtained fractions, in order of appearance: $m^7GppG(m^7)$ (3), m^7GppG (2) and unreacted 1, were pooled, concentrated and converted into corresponding sodium salts as described earlier 1,4. In a similar manner compounds 5 and 6, as well as 8 and 9, were prepared from 4 and 7, respectively.

¹H NMR spectra were recorded on a Jeol GX 400 and a Bruker AM 500 instruments in ²H₂O. ³¹P NMR spectra were run on a Varian XL 200 apparatus. The absorption spectra were recorded on a Cary 3E spectrophotometer. The fluorescence excitation and emission spectra were measured on a Perkin Elmer LS-50 spectrometer.

This project was supported by Polish Committee for Scientific Research (KBN), Grant Nos. 4 0800 91 and 4 1765 91 01, and partially by BST-472/14/94 and BST-475/D/BF, R.E.R. supported by Research Grant GM 20818 from the National Inst. of General Medical Sciences, USA and Grant No. 3076 from the Council for Tobacco Research-USA, Inc.

REFERENCES

- 1. Darżynkiewicz, E., Ekiel, I., Tahara, S.M., Seliger, L.S., Shatkin, A.J. Biochemistry 1985, 24, 1701.
- 2. Jankowska, M., Stępiński, J., Stolarski, R., Temeriusz, A., Darżynkiewicz, E. Collect. Czech. Chem. Commun. 1993, 58, 138 and references cited therein.
- 3. Sawai, H., Shimazu, M., Wakai, H., Wakabayashi, H., Shinozuka, K. *Nucleosides Nucleotides* 1992, 11, 773 and references cited therein.

- Darżynkiewicz, E., Stępiński, J., Tahara, S.M., Stolarski, R., Ekiel, I., Haber, D., Neuvonen, K., Lehikoinen, P., Labadi, I., Lönnberg, H. Nucleosides Nucleotides 1990, 9, 599 and references cited therein.
- 5. Wieczorek, Z., Darżynkiewicz, E., Stępiński, J., Lönnberg, H. Collect. Czech. Chem. Commun. 1990, 55, 2765.
- 6. Darżynkiewicz, E., Ekiel, I., Lassota, P., Tahara, S.M. Biochemistry 1987, 26, 4372.
- 7. Chu, L.-Y., Rhoads, R.E. Biochemistry 1980, 19, 184.